Internal Assesment for UG Mathematics (GE)-2022
 Department of Mathematics(UG \& PG)
 Ramananda College
 Semester IV
 F.M. 10
 TIME 30 MINUTES
 Paper Code: SH/MTH/404/GE-4
 (Differential Equations \& Vector Calculus)

Answers any Two

1. Prove that the scalar triple product of three vectors $\vec{a}, \vec{b}, \vec{c}$ is equal in magnitude to the volume of parallelepiped, whose three concurrent edges are $\vec{a}, \vec{b}, \vec{c}$. Find the value of the constant d such that the vectors $(2,-1,1),(1$, $2,-3)$ and $(3, d, 5)$ are coplanar.
2. If \vec{a} and \vec{b} be two non-collinear vectors such that $\vec{a}=\vec{c}+\vec{d}$, where \vec{c} is a vector parallel to \vec{b} and \vec{d} is a vector perpendicular to \vec{b}, then obtain expressions for \vec{c} and \vec{d} in terms of \vec{a} and \vec{b}.
3. Find the fixed point of $\dot{x}=\sin x$ and then check the stability at the fixed points $1+4$
4. Define Lipschitz function and Lipschitz constant. Show that $f(x, y)=x^{2}+6 y^{2}$ is satisfies Lipschitz condition in the region S: $|x| \leq 3,|y| \leq 4$. Give an example of a function which does not satisfy Lipschitz condition, justify your answer.
$1+2+2$
